
BTech451 Semester

Presentation
Dian LIN

 Code Runner Extension

Introduction: Push up barriers(code implementations) into

 Code Runner against cheating.

Motivation: The Functionality of cheating detection is not

 covered yet by Code Runner. Which may cause:

1. Unfair to hard work students

2. Lost faith in Code Runner

3. Students try to cheating in Code Runner

Application/Tool(Preparation)

• SandBox: used to run the series of test

cases for input source code under limited

time which prevents infinite loops or

deadlocks from blocking the system. And

effectively prevent malicious codes.(guard

system).

• MySQL: open-source relational database

management system(RDBMS). Allowed

users to create relationships between

tables by primary keys and foreign keys.

Ideas

• Similarity checking: the straightforward idea by

checking submissions similarity. (research required)

• Programming variation: the answers of Code Runner

questions could be obtained online or translated from

different languages. (research required)

• Functionality addition: more functionality are possible

to be implemented into Code Runner. (based on the

research results)

Research Process
(Similarity Checking)

Length of Program Similarity percentage

3 lines (shortest) 100%

3 - 67 lines 68% - 77%

67 lines(longest) 56.6%

Median Length: 30 lines Median similarity:76.7%(relatively high)

Analysis: High similarity would occur due to

short coding length, same question and example

provided in lectures.

Conclusion: Similarity checking is not a feasible

anti-cheating approach because of above

reasons.

Research Process
(Programming variation)

• Question types being selected:
1. recursive question: summing numbers.

2. pre-define question: binary tree.

3. sorting question: bubble-sort, insertion-sort and merge-sort.

• Analysis:
1. Solutions of recursive and sorting questions are both easily found

online, but pre-define question are not possible since Code Runner

define Class for participants.

2. Programming languages translations is an unavoidable personal

skill which is not able to be detected by Code Runner.

Conclusion: pre-defined questions become a preferred

question creation way but can't prevent copy-paste cheating.

Idea Implementation

• The promising idea to implement for Code

Runner is to make sure every participant

gets different questions.

• Idea: One Question has more than one

variant, such as Boolean question for Odd

or Even number.

• The more variants in one question, the

more probability of cheating would be

reduced.

Proof of Concept

• Idea from last sildes relates to question creation page

but other funtionality may remain what they used to be.

• We don't know yet if the idea is possible to be

implemented and successfully working with MySQL

Database, prototype should be made instead of directly

moving to Code Runner.

• The GUI mock-up should be same as Code Runner but

additional 'option' (variant) functionality needs to be

added.

• All question details and test cases in prototype should be

store into same database as Code Runner does.

GUI Mock-up Implementation

(Java)

 Question Creation page:

Administrator/Lectures variants view (after Odd and Even variants being added):

GUI Mock-up Implementation

(Java)
• Student question view:

MySQL Database lookup

• All data displayed can be retrieved from Code Runner

database, and what we need is to review what tables in the

database relate to question creation. Records from

following 4 circled tables are detected to be changed when

created new questions.

Therefore, MySQL database is connected, and these 4

tables are used to store new records from my prototype.

MySQL Database lookup

mdl_question schema mdl_question_categories schema

Field Type Null Key

id bigint(10) No PRI

category bigint(10) No MUL

name varchar(255) No

questiontext longtext No

qtype varchar(20) No

Field Type Null Key

id bigint(10) No PRI

name varchar(255) No

contextid bigint(10) No MUL

mdl_question_coderunner_tests schema mdl_question_coderunner_options schema

Field Type Null Key

id bigint(10) No PRI

questionid bigint(10) No MUL

testcode longtext YES

stdin longtext YES

expected longtext YES

mark decimal(8,3) No

Field Type Null Key

id bigin(10) No PRI

questionid bigint(10) No MUL

coderunnertype varchar(255) No MUL

prototypetype tinyint(1) No MUL

allornothing tinyint(1) No

Relationships of

Tables
mdl_question

id(primary key)

category

name

questiontext

qtype

mdl_question_categories

id(primary key)

name

contextid

mdl_question_options

id(primary key)

Questionid

Optionname

Optiontext

Answerforoption

Optionsampleanswer

optionfortestcase

textcode

…

expected

mark

mdl_question_coderunner_options

id(primary key)

questionid

coderunnertype

prototypetype

allornothing

1

many

1

many
1

many

Prototype Testing

• After GUI Mock-up and functionality implemented, we

need to test if it is working as Code Runner does.

• Question creation test(record insertion)

– In GUI Mock-up, type new question details, test case and expected output

– all data above should be inserted into MySQL database as new records

– question details should be able to display in both lecture's view and

student's view

Prototype Testing

Prototype Testing

Prototype Testing

 Lecture and student view of the new created question

Prototype Testing
With correct and incorrect answer, prototype is able to run students input as

Java file and return the feedback as SandBox does in Code Runner.

Prototype Testing

• Deletion test:

– records of the corresponding question will be

both deleted from teacher's view and MySQL

database

– Students are no longer to view the deleted

question again.

Prototype Testing
The variants 'Odd' that we just created are now deleted from database.

Further work

• So far, proof of concept has been successfully done by

using Java programming in my prototype.

• Moving back to Code Runner and implement the concept

by PHP programming skills.

• More feasible ideas against cheating need to be

generated and implemented into Code Runner.

• Reseach based on particular ideas.

Thank you!

¿Questions?

